FMS-like tyrosine kinase-3 (FLT3) is a new therapeutic target for acute myelocytic leukemia (AML), because FLT3 mutations are the most common genetic alterations in AML and are directly related to leukemogenesis. We studied cytotoxic interactions of a FLT3 inhibitor, PKC412, with eight conventional antileukemic agents (cytarabine, doxorubicin, idarubicin, mitoxantrone, etoposide, 4-hydroperoxy-cyclophosphamide, methotrexate and vincristine) using three leukemia cell lines carrying FLT3 mutations (MOLM13, MOLM14 and MV4-11) and five leukemia cell lines without FLT3 mutations (KOPB-26, THP-1, BALL-1, KG-1 and U937). PKC412 showed synergistic effects with all agents studied except methotrexate for FLT3-mutated cell lines in isobologram analysis. In contrast, PKC412 was rather antagonistic to most drugs, except for 4-hydroperoxy-cyclophosphamide and vincristine, in leukemia cell lines without FLT3 mutations. Cell-cycle analysis revealed that PKC412 induced G1 arrest in leukemia cell lines carrying FLT3 mutations, whereas it arrested cells in G2/M phase in the absence of FLT3 mutations, which may underlie the divergent cytotoxic interactions. These results suggest that the simultaneous administration of PKC412 and other agents except methotrexate is clinically effective against FLT3 mutationpositive leukemias, whereas it would be of little benefit for FLT3 mutation-negative leukemias. Our findings may be of help for the design of PKC412-based combination chemotherapy.