Purpose of review
Myopia is one of the major causes of visual impairment globally, with myopia and its complications thus placing a heavy healthcare and economic burden. With most cases of myopia developing during childhood, interventions to slow myopia progression are most effective when implemented early. To address this public health challenge, artificial intelligence has emerged as a potential solution in childhood myopia management.
Recent findings
The bulk of artificial intelligence research in childhood myopia was previously focused on traditional machine learning models for the identification of children at high risk for myopia progression. Recently, there has been a surge of literature with larger datasets, more computational power, and more complex computation models, leveraging artificial intelligence for novel approaches including large-scale myopia screening using big data, multimodal data, and advancing imaging technology for myopia progression, and deep learning models for precision treatment.
Summary
Artificial intelligence holds significant promise in transforming the field of childhood myopia management. Novel artificial intelligence modalities including automated machine learning, large language models, and federated learning could play an important role in the future by delivering precision medicine, improving health literacy, and allowing the preservation of data privacy. However, along with these advancements in technology come practical challenges including regulation and clinical integration.