High academic failure and dropout rates in engineering courses are significant worldwide concerns attributed to various factors, with academic performance being a critical variable. This article provides a methodology to estimate the performance risk of students in engineering schools. Risk analysis is a strategy to evaluate academic success, which provides a set of methods to analyze, understand, and predict student outcomes before enrolling in specific majors or challenging college courses. This article develops a methodology to estimate fragility curves for students entering an engineering course. The fragility function concept, borrowed from the earthquake engineering field, estimates the likelihood of success in a course, given relevant student metadata, such as the grade point average, thus comprehensively addressing student performance variability. A student academic success prediction model enables instructional designers to make informed decisions. For example, fragility curves can help achieve two goals: (i) assessing the population at risk for a course to take actions to improve student success rates and (ii) assessing a course's relative difficulty based on its fragility function parameters. We demonstrate this methodology through a case study comparing the relative difficulty of two engineering courses, Statics and Solid Mechanics, at a university in Colombia. Given that Statics serves as a prerequisite for Solid Mechanics, deficiencies in the former can significantly impact student performance in the latter. The case study results reveal that Solid Mechanics poses a higher risk of academic failure than Statics, underscoring the importance of a strong foundation in prerequisite courses.