Chinese Materia Medica Resources (CMMRs) are crucial for developing the tradition and industry of traditional Chinese medicine. Given the increasing demand for CMMRs, an accurate and effective understanding of CMMRs is urgently needed. Chinese medicinal plants (CMPs) are the most important sources of CMMRs. Traditional methods of investigating medicinal plant resources have limitations, including severe subjectivity and poor timeliness, which make it difficult to meet the demand for real-time monitoring of large-scale medicinal plant resources. In recent years, remote sensing technology has become an important means of obtaining information on medicinal plants, and the application of this technology has made up for the shortcomings of traditional methods. This paper first discusses the development of investigation methods of CMMRs; points out the importance of remote sensing technology in the application of spatial distribution and information identification and extraction of Chinese medicinal plant resources (CMPRs); analyzes the characteristics of CMPs in different planting patterns, different habitats, and different regions from the perspective of remote sensing information extraction; and explores the selection of suitable data sources, providing a reference for medicinal plant identification and information extraction. Secondly, according to the existing classification and identification methods, previous studies are summarized from the perspectives of classification scales, classification features, and classification accuracy, and the advantages and disadvantages of the commonly used remote sensing classification methods in the investigation of CMPRs are summarized and compared. Finally, the development trend of remote sensing technology in the identification and information extraction of CMPs is examined, and the key technical problems to be solved in the identification and classification of CMPs and the extraction of area information are summarized so as to provide technical support and experience references for the application of remote sensing in the investigation of CMPRs.