Background
To fulfill their epidemiological vigilance function, authorities require valid, complete, timely, precise, and reliable information. Advancements in new technologies have facilitated public health control through vigilance systems for notifiable diseases; these systems can gather large numbers of simultaneous notifications, process a wide array of data, and deliver updated information in real time to relevant decision-makers. A large worldwide deployment of new information technologies was seen during the COVID-19 pandemic; these technologies proved to be efficient, resourceful tools . Platform developers should seek self-evaluation strategies to optimize functionality or improve the capacity of national vigilance systems. These tools exist in the Latin American region at various development stages, although publications reporting architectural characteristics of these tools are scarce. International publications are more abundant a nd serve as a basis for comparing the standards that need to be met.
Objective
This study aimed to assess the architecture of the Chilean epidemiological surveillance system for notifiable diseases (EPIVIGILA), as compared to that of the international systems reported in scientific publications.
Methods
A search for scientific publications was conducted to identify systematic reviews that documented the architectural characteristics of disease notification and vigilance systems. EPIVIGILA was compared to other systems from countries in Africa, the Americas, Asia, Europe, and Oceania.
Results
The following aspects of the architecture were identified: (1) notification provenance, (2) minimum data set, (3) database users, and (4) data quality control. The notifying organizations, including hospitals, clinics, laboratories, and medical consultation offices, were similar among the 13 countries analyzed; this contrasted with Chile, where the reporting agent is the physician who can belong to an organization. The minimum data set include patient identification, disease data, and general codifications. EPIVIGILA includes all these elements, in addition to symptomatology, hospitalization data, type of medicine and treatment result, and laboratory test types. The database users or data analyzers include public health organizations, research organizations, epidemiological organizations, health organizations or departments, and the Centers for Disease Control and Prevention. Finally, for data quality control, the criteria most often used were completeness, consistency, validity, timeliness, accuracy, and competencies.
Conclusions
An efficient notification and vigilance system must be capable of promptly identifying probable risks as well as incidence and prevalence of the diseases under surveillance. EPIVIGILA has been shown to comply with high quality and functionality standards, at the level of developed countries, by achieving total national coverage and by providing timely, trustworthy, and complete information at high-security levels, thus obtaining positive assessment from national and international authorities.