The present study aimed to systematically analyze the value of microRNA-122 (miRNA-122) in the diagnosis and prognosis of hepatocellular carcinoma (HCC) and other types of cancer. First, the reverse transcription-quantitative polymerase chain reaction method was used to detect the expression levels of miRNA-122 in the serum samples of patients with HCC, benign lesions and healthy volunteers. Next, miRNA-seq data of miRNA-122 from The Cancer Genome Atlas database were used to analyze the differential expression and overall survival rate associated with a variety of types of cancer. Meanwhile, the target gene prediction of miRNA-122 was performed using four different software programs. Finally, 353 significant target genes were identified for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis. Finally, it was demonstrated that the expression levels of miRNA-122 in the HCC group were increased compared with the healthy group (P<0.001), but decreased with respect to the benign group (P<0.001). In addition, the combination of the miRNA-122 and a fetoprotein may further improve the diagnostic accuracy between the HCC and healthy groups (area under the curve, 0.980; 95% confidence interval, 0.958–1.000). It was also demonstrated that miRNA-122 exhibited significantly differential expression and the overall survival rate was predicted for various other types of cancer, including colorectal cancer, renal carcinoma, cholangiocarcinoma, prostate cancer and thyroid carcinoma. Functional enrichment analysis demonstrated that the target genes of miRNA-122 may contribute to the composition of the nucleus and cytoplasm, and regulate a variety of biological processes, including cardiac muscle cell differentiation and glucose metabolic processes via protein biosynthesis, estrogen and glucagon associated signaling pathways. These results revealed that miRNA-122 may be an indispensable biomarker for the diagnosis, prognostic evaluation and targeted therapy in pan-cancer.