The implementation of Industry 4.0 has integrated manufacturing, electronics, and engineering materials, leading to the creation of smart parts (SPs) that provide information on production system conditions. However, SP development faces challenges due to limitations in manufacturing processes and integrating electronic components. This systematic review synthesizes scientific articles on SP fabrication using additive manufacturing (AM), identifying the advantages and disadvantages of AM techniques in SP production and distinguishing between SPs and smart spare parts (SSPs). The methodology involves establishing a reference framework, formulating SP-related questions, and applying inclusion criteria and keywords, initially resulting in 1603 articles. After applying exclusion criteria, 70 articles remained. The results show that while SP development is advancing, widespread application of AM-manufactured SP is recent. SPs can anticipate production system failures, minimize design artifacts, and reduce manufacturing costs. Furthermore, the review highlights that SSPs, a subcategory of SPs, primarily differs by replacing conventional critical parts in the industry, offering enhanced functionality and reliability in industrial applications. The study concludes that continued research and development in this field is essential for further advancements and broader adoption of these technologies.