Random Forest models are widely used in genomic data analysis and can offer insights into complex biological mechanisms, particularly where features influence the target in interactive, non-linear, or non-additive ways. Currently, some of the most efficient random forest methods, in terms of computational speed, are implemented in Python. However, many biologists use R for genomic data analysis, as R offers a unified platform for performing additional statistical analysis and visualization. Here we present an R package,pyRforest, which integrates Pythonscikit-learn`RandomForestClassifier` algorithms into the R environment.pyRforestinherits the efficient memory management and parallelization of Python, and is optimized for classification tasks on large genomic datasets, such as those from RNA-seq.pyRforestoffers several additional capabilities, including a novel rank-based permutation method for biomarker identification. This method can be used to estimate and visualize p-values for individual features, allowing the researcher to identify a subset of features for which there is robust, statistical evidence of an effect. In addition,pyRforestincludes methods for the calculation and visualization of SHapley ADditive Explanations (SHAP) values. Finally,pyRforestincludes support for comprehensive downstream analysis for gene ontology and pathway enrichment.pyRforestthus improves the implementation and interpretability of random forest models for genomic data analysis by merging the strengths of Python with R.pyRforestcan be downloaded at:https://www.github.com/tkolisnik/pyRforestwith an associated vignette athttps://github.com/tkolisnik/pyRforest/blob/main/vignettes/pyRforest-vignette.pdf.