The consequences of foot‐and‐mouth disease impact regional economies and food security through animal mortality and morbidity, trade restrictions and burdens to veterinary infrastructure. Despite efforts to control the disease, some regions, mostly in warmer climates, persistently report disease outbreaks. Consequently, it is necessary to understand how environmental factors influence transmission, of this economically devastating disease. Extensive research covers basic aetiology and transmission potential of livestock and livestock products for foot‐and‐mouth disease virus (FMDV), with a subset evaluating environmental survival. However, this subset, completed in the early to mid‐20th century in Northern Europe and the United States, is not easily generalized to today's endemic locations. This review uncovered 20 studies, to assess current knowledge and analyse the effects of environmental variables on FMDV survival, using a Cox proportional hazards (Coxph) model. However, the dataset is limited, for example pH was included in three studies and only five studies reported both relative humidity (RH) and temperature. After dropping pH from the analysis, our results suggest that temperature alone does not describe FMDV survival; instead, interactions between RH and temperature have broader impacts across various conditions. For instance, FMDV is expected to survive longer during the wet season (survival at day 50 is ~90% at 16°C and 86% RH) versus the dry season (survival at day 50 approaches 0% at 16°C and 37.5% RH) or comparatively in the UK versus the Southwestern United States. Additionally, survival on vegetation topped 70% on day 75 when conditions exceeded 20°C with high RH (86%), drastically higher than the survival on inanimate surfaces at the same temperature and RH (~0%). This is important in tropical regions, where high temperatures can persist throughout the year, but RH varies. Therefore, parameter estimates, for disease modelling and control in endemic areas, require environmental survival data from a wider range of conditions.