Celem ogólnym jest ocena możliwości zastosowania hybrydowego systemu monitorowania gospodarstw rolnych i ich wpływu na środowisko, natomiast szczegółowe obejmowały ocenę możliwości typowania klas presji oraz ocenę presji gospodarstw o różnej specjalizacji na środowisko z wykorzystaniem Systemu Szybkiej Identyfikacji, ocenę spójności wewnętrznej i rzetelności pomiaru proponowanego systemu monitoringu i ocenę trendów zmian, zachodzących w gospodarstwach indywidualnych w czasie. Badaniami objęto 1226 indywidualnych gospodarstw rolnych, zróżnicowanych pod względem obszarowym, struktury gruntów oraz specjalizacji. Dane zostały zebrane bezpośrednio w gospodarstwach rolnych z wykorzystaniem autorskiej ankiety i dotyczyły lat 2001–2019. Gospodarstwa zlokalizowane były w 717 miejscowościach, w 270 gminach i w 14 województwach. Poddano je ocenie bonitacyjnej na podstawie Systemu Szybkiej Identyfikacji gospodarstw (SSI). Analizy oparto na dwóch wyróżnionych w systemie modułach – produkcyjnym oraz techniczno-technologicznym. W pracy wytypowano klasy presji na środowisko oraz grupy gospodarstw o określonej presji metodą TOPSIS, przeanalizowano spójność skal cząstkowych wykorzystywanych w modułach SSI. Oceniono również jednorodność modułów (analizy wielowymiarowe). Podziału gospodarstw na klasy wykonano również z użyciem uczenia maszynowego (machine learning), przy wykorzystaniu sztucznej sieć neuronowej (tzw. klasyfikator Kohonena). Uzyskane wyniki dla obu modułów oraz syntetycznego wskaźnika SSI poddano również analizie trendów zmian w czasie, w przyjętych czterech okresach, wynikających z realizacji tzw. Programów działań. Na podstawie przeprowadzonych badań wyróżniono klasy gospodarstw o różnej presji. Selektywna analiza modułów pokazała, że można je analizować oddzielnie, wskazując na problemy w obrębie jednego z modułów. Szczegółowa analiza grup specjalizacyjnych gospodarstw (w pracy wyróżniono 16 grup), z wykorzystaniem zarówno metody TOPSIS jak i sztucznych sieci neuronowych, wskazuje na wysoką presję gospodarstw specjalizujących się w chowie lub hodowli bydła (GB) oraz z niską obsadą inwentarza (G ≤0,15 DJP·ha–1). Szansa na wysoki wynik, szczególnie w module środowiskowym, wzrastała również, jeśli gospodarstwo specjalizowało się w chowie drobiu (GD). Szczegółowa analiza SSI wykazała, że zaproponowany system, charakteryzuje się spójnością wewnętrzną skal wykorzystywanych w obu jego modułach. Każda z inwentaryzowanych skal ma podobne znaczenie dla SSI, a wyniki wskazują, że wskaźnik ten mierzy presję jednorodnie. Przeprowadzone badania wykazały, że nie można stworzyć podziału skal lepszego niż zaproponowany na dwa moduły – produkcyjny i tech-tech. Zdolność systemu do wykonywania spójnych pomiarów oraz oceny trafności i precyzji w interpretacji danych kształtuje się więc na zadowalającym poziomie. Na podstawie wykonanych analiz można stwierdzić, że parametry modułu środowiskowego mają większy wpływ na różnicowanie gospodarstw, ale wyniki dla modułu tech-tech kształtują się w szerszym zakresie. Wyniki modułów opierają się na różnych miarach, co świadczy o komplementarności systemu. Na podstawie uzyskanych wyników można wnioskować, że system SSI sprawdza się w analizach czasowych i wskazuje na pewne trendy w indywidualnych gospodarstwach rolnych.