This paper investigates a couple of inverse problems of simultaneously determining time and space dependent coefficients in the parabolic heat equation using initial and boundary conditions of the direct problem and overdetermination conditions. The measurement data represented by these overdetermination conditions ensure that these inverse problems have unique solutions. However, the problems are still ill-posed since small errors in the input data cause large errors in the output solution. To overcome this instability we employ the Tikhonov regularization method. The finite-difference method (FDM) is employed as a direct solver which is fed iteratively in a nonlinear minimization routine. Both exact and noisy data are inverted. Numerical results for a few benchmark test examples are presented, discussed and assessed with respect to the FDM mesh size discretisation, the level of noise with which the input data is contaminated, and the chosen regularization parameters.