Modeling effective transport properties of 3D porous media, such as permeability, at multiple scales is challenging as a result of the combined complexity of the pore structures and fluid physics - in particular, confinement effects which vary across the nanoscale to the microscale. While numerical simulation is possible, the computational cost is prohibitive for realistic domains, which are large and complex. Although machine learning models have been proposed to circumvent simulation, none so far has simultaneously accounted for heterogeneous 3D structures, fluid confinement effects, and multiple simulation resolutions. By utilizing numerous computer science techniques to improve the scalability of training, we have for the first time developed a general flow model that accounts for the pore-structure and corresponding physical phenomena at scales from Angstrom to the micrometer. Using synthetic computational domains for training, our machine learning model exhibits strong performance (R^2=0.9) when tested on extremely diverse real domains at multiple scales.