Airborne LiDAR has been adopted as a powerful survey tool for overhead power transmission line (TL) cruising so that the operator can quickly search for, locate and eliminate the risk objects at the power line corridor scene. However, the TLs are moving objects, which positions are dynamically affected by working conditions (e.g. temperature variation, wind-induced conductor motion) while they are acquired by airborne LiDAR. The point clouds data acquired by airborne LiDAR only reflect the geometric relationship between the TL and its surrounding objects at the transient moment of the data acquisition. In order to overcome the shortcomings of the instantaneously acquired laser scanning data, this paper presents an approach for simulating the dynamic TL shape under different working conditions based on mechanical computation of the overhead line. The proposed approach considers the tension variation of TL resulting from weather conditions, such as temperature, wind and ice, while simulates TL sag curve using the parabolic catenary equation combined with the tension. A performance evaluation was conducted over the TLs data with multiple voltage levels. Experiments results show that the proposed approach is effective for simulating the 3D shape of TL under different working conditions. The simulation error achieved was less than 0.65m and the maximum Diff-Ratio was about 1.57%. This provides a scientifically sound predicting and modeling approach for TL risk assessment and warning along the corridor.INDEX TERMS airborne laser scanning, remote sensing, power line modeling, risk management, transmission line simulation This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.