Many insect-borne pathogens are heterogeneously distributed within their hosts: therefore, a vector's within-plant distribution may be a predictor of its exposure to pathogens. In this study, we set out to quantify plant site preference, in the context of background matching, and investigated its effect on acquisition of a bacterial pathogen by its leafhopper vectors. The two green-coloured species, Graphocephala atropunctata and Draeculacephala minerva, preferred green plant tissue and artificial backgrounds whereas the brown-coloured Homalodisca vitripennis preferred brown stem tissue and backgrounds. Within-plant feeding site did not predict either the acquisition success or the number of plant-pathogenic Xylella fastidiosa cells acquired by the vectors; an 86% mortality for G. atropunctata was reported on the lignified stem tissue. Overall, H. vitripennis acquired significantly more cells than G. atropunctata. A novel artificial diet-based transmission system was used to further illustrate that the observed between-species difference in the number of cells acquired was independent of vector-host plant interactions. H. vitripennis, a less efficient vector of the bacterium X. fastidiosa on grapevines, acquired more bacterial cells than G. atropunctata, possibly due to its larger size. Contrary to previous assumptions, pathogen acquisition efficiency by the vectors did not explain their reported differences in inoculation. Vector interactions with the host during the inoculation stage should be evaluated as another determinant of X. fastidiosa transmission efficiency.