Osteoarthritis (OA) is a chronic musculoskeletal disease affecting approximately 500 million people worldwide. Globally, OA is one of the most common and leading causes of disability. Several genetic factors are involved in OA, including inherited genes, genetic susceptibility, and genetic predisposition. As the pathogenesis of OA is unknown, there are almost no effective treatments available to prevent the onset or progression of the disease. In recent years, many researchers focused on bioinformatics analysis to explore new biomarkers for the diagnosis, treatment, and prognosis of human diseases. In this work, we obtain the traditional RNA sequencing data of OA patients from the GEO database. By performing the differentially expressed analysis, we successfully obtain the genes that are closely associated with the OA. In addition, the Venn diagram was applied to evaluate the genes that are involved in OA and immune-related genes. The protein-protein interaction analysis was further conducted to explore the hub genes. The single-cell RNA sequencing analysis was used to evaluate the expression distribution of the MMP, VEGFA, SPI1, and IRF8 in synovial tissues of patients with osteoarthritis. Finally, the GSVA enrichment analysis discovered the potential pathways involved in OA patients. Our analysis provides a new direction for the exploration of the process of OA patients. In addition, VEGFA may be considered a promising biomarker in OA.