Treg cells maintain the tumor microenvironment in an immunosuppressive state preventing an effective anti-tumor immune response. A possible strategy to overcome Treg-cell suppression focuses on OX40, a costimulatory molecule expressed constitutively by Treg cells while being induced in activated effector T cells. OX40 stimulation, by the agonist mAb OX86, inhibits Treg-cell suppression and boosts effector T-cell activation. Here we uncover the mechanisms underlying the therapeutic activity of OX86 treatment dissecting its distinct effects on Treg and on effector memory T (Tem) cells, the most abundant CD4 1 populations strongly expressing OX40 at the tumor site. In response to OX86, tumor-infiltrating Treg cells produced significantly less interleukin 10 (IL-10), possibly in relation to a decrease in the transcription factor interferon regulatory factor 1 (IRF1). Tem cells responded to OX86 by upregulating surface CD40L expression, providing a licensing signal to DCs. The CD40L/CD40 axis was required for Tem-cellmediated in vitro DC maturation and in vivo DC migration. Accordingly, OX86 treatment was no longer therapeutic in CD40 KO mice. In conclusion, following OX40 stimulation, blockade of Treg-cell suppression and enhancement of the Tem-cell adjuvant effect both concurred to free DCs from immunosuppression and activate the immune response against the tumor.
3615The tumor microenvironment is characterized by an immunosuppressive cytokine milieu, which promotes immune tolerance and tumor growth. Treg cells secrete interleukin 10 (IL-10), which plays a critical role in suppressing immune responses and in particular the maturation of fully competent DCs [13][14][15]. Among tumor-infiltrating Teff cells, the subpopulation of effector memory T (Tem) cells is the most abundant. Tem cells are CD4 1 CD44 high CD62L low lymphocytes excluded from resting lymph nodes and mainly localized in peripheral tissues; upon stimulation they rapidly activate and secrete effector cytokines like IFN-g, but they have limited proliferative capacity [16]. In experimental models of immune activation, Tem cells constitutively express CD40L at levels sufficient to induce DC activation in an antigen-independent manner [17]. The CD40/CD40L axis is crucial for DC maturation and the subsequent T-cell priming. However in the tumor microenvironment this costimulatory pathway is often dampened, thus impairing the generation of an efficient anti-tumor immune response [18,19].In this study we have investigated the mechanisms by which OX86 modulates Treg-and Teff-cell functions and their reciprocal interactions with DCs at the tumor site. We propose a model of the tumor microenvironment in which, after OX86 treatment, DCs receive a lower IL-10-mediated inhibition by Treg cells on the one hand, and a stronger stimulation from Tem cells, via the CD40/CD40L axis, on the other. In this favorable condition, DCs acquire a stronger migratory ability toward the draining LNs (dLNs), thus inducing a specific anti-tumor immune response.
ResultsIntratumoral ...