HuR is a ubiquitous, RNA binding protein that influences the stability and translation of several cellular mRNAs. Here, we report a novel role for HuR, as a regulator of proteins assembling at the 3= untranslated region (UTR) of viral RNA in the context of hepatitis C virus (HCV) infection. HuR relocalizes from the nucleus to the cytoplasm upon HCV infection, interacts with the viral polymerase (NS5B), and gets redistributed into compartments of viral RNA synthesis. Depletion in HuR levels leads to a significant reduction in viral RNA synthesis. We further demonstrate that the interaction of HuR with the 3= UTR of the viral RNA affects the interaction of two host proteins, La and polypyrimidine tract binding protein (PTB), at this site. HuR interacts with La and facilitates La binding to the 3= UTR, enhancing La-mediated circularization of the HCV genome and thus viral replication. In addition, it competes with PTB for association with the 3= UTR, which might stimulate viral replication. Results suggest that HuR influences the formation of a cellular/viral ribonucleoprotein complex, which is important for efficient initiation of viral RNA replication. Our study unravels a novel strategy of regulation of HCV replication through an interplay of host and viral proteins, orchestrated by HuR.
IMPORTANCE
Hepatitis C virus (HCV) is highly dependent on various host factors for efficient replication of the viral RNA.Here, we have shown how a host factor (HuR) migrates from the nucleus to the cytoplasm and gets recruited in the protein complex assembling at the 3= untranslated region (UTR) of HCV RNA. At the 3= UTR, it facilitates circularization of the viral genome through interaction with another host factor, La, which is critical for replication. Also, it competes with the host protein PTB, which is a negative regulator of viral replication. Results demonstrate a unique strategy of regulation of HCV replication by a host protein through alteration of its subcellular localization and interacting partners. The study has advanced our knowledge of the molecular mechanism of HCV replication and unraveled the complex interplay between the host factors and viral RNA that could be targeted for therapeutic interventions.
Hepatitis C virus (HCV) was discovered in 1989 as a major cause of chronic non-A non-B hepatitis (1). HCV is an enveloped positive-strand RNA virus classified in the Hepacivirus genus within the Flaviviridae family. The single-stranded uncapped 9.6-kb RNA codes for a long polyprotein of ϳ3,000 amino acids which is then processed to structural and nonstructural proteins. The RNA genome is flanked by the 5= and 3= untranslated regions (UTRs), which are essential for translation and replication of the viral RNA. The viral proteins are synthesized by internal ribosome entry site (IRES)-mediated translation. These proteins initiate extensive remodeling of the intracellular membranes to create a detergent-resistant scaffold for viral replication, termed as the "membranous web" (2). The progeny viral genomes a...