Melanoma is not only one of the most immunogenic cancers but also one of the most effective cancers at subverting host immunity. The role of T lymphocytes in tumor immunity has been extensively studied in melanoma, whereas less is known about the importance of B lymphocytes. The effects of plasma cells (PCs), in particular, are still obscure. The aim of this study was to characterize pathological features and clinical outcome of primary cutaneous melanomas associated with PCs. Moreover, we investigated the origins of the melanoma-associated PCs. Finally, we studied the outcome of patients with primary melanomas with PCs. We reviewed 710 melanomas to correlate the presence of PCs with histological prognostic markers. Immunohistochemistry for CD138 and heavy and light chains was performed in primary melanomas (PM) and in loco-regional lymph nodes (LN), both metastatic and not metastatic. In three PM and nine LN with frozen material, VDJ-rearrangement was analyzed by Gene Scan Analysis. Survival analysis was performed on a group of 85 primary melanomas 42 mm in thickness. Forty-one cases (3.7%) showed clusters/sheets of PCs. PC-rich melanomas occurred at an older age and were thicker, more often ulcerated and more mitotically active (Po 0.05). PCs were polyclonal and often expressed IgA in addition to IgG. In LN, clusters/sheets of IgA+ PCs were found both in the sinuses and subcapsular areas. Analysis of VDJ-rearrangements showed the IgA to be oligoclonal. Melanomas with clusters/sheets of PCs had a significantly worse survival compared with melanomas without PCs while, interestingly, melanomas with sparse PCs were associated with a better clinical outcome (P = 0.002). In conclusion, melanomas with sheets/clusters of PCs are associated with worse prognosis. IgG and IgA are the isotypes predominantly produced by these PCs. IgA oligoclonality suggests an antigen-driven response that facilitates melanoma progression by a hitherto unknown mechanism.