The combustion characteristics of propellants containing AP, HMX, an energetic binder, and aluminum particles with various polymer coatings are studied at pressures of 0.15 and 4.6 MPa. It is found that the coatings influence the burning rate, the particle size distribution of condensed combustion products, and the completeness of aluminum combustion. It is shown that the agglomeration can be reduced by using aluminum with fluorine-containing coatings. The application of some coatings results in a reduction in the mass of the agglomerates with an insignificant increase in their size. The greatest effect was achieved when using aluminum coated with (CH 2 CH CH 2 O) 2 Si[OCH 2 (CF 2 CF 2 ) 2 H] 2 [bis(allyloxy)-bis(2,2,3,3,4,4,5,5-octafluoropentyloxy)silane]. For this coating, a size reduction is also observed for micron-size oxide particles.