An innovative strategy integrating the use of biosurfactant (BS) and persulphate activated by chelated iron for the decontamination of soil from an emerging pollutant chlorophene was studied in laboratory down-flow columns along with other persulphate activation aids including combined application of persulphate and hydrogen peroxide, and persulphate activation with sodium hydroxide. Although BS addition improved chlorophene removal by the persulphate treatment, the addition of chelated iron did not have a significant influence. Combined application of persulphate with hydrogen peroxide resulted in a significant (p≤.05) overall improvement of chlorophene removal compared with treatment with persulphate only. The highest removal rate (71%) of chlorophene was achieved with the base-activated persulphate, but only in the upper part (of 0.0-3.5 cm in depth) of the column. The chemicals at the applied dosages did not substantially influence the Daphnia magna toxicity of the effluent. Dehydrogenase activity (DHA) measurements indicated no substantial changes in the microbial activity during the persulphate treatment. The highest oxygen consumption and a slight increase in DHA were observed with the BS addition. The combined application of persulphate and BS at natural soil pH is a promising method for chlorophene-contaminated soil remediation. Hydroquinone was identified among the by-products of chlorophene degradation.