Let 𝑀𝑘 be the 𝑘-th Mulatu number. Let 𝑟, 𝑠 be non-zero integers with 𝑟 ≥ 1 and 𝑠 ∈ {−1, 1}, let {𝑈𝑛}𝑛≥0 be the generalized Lucas sequence and {𝑉𝑛}𝑛≥0 its companion given respectively by 𝑈𝑛+2 = 𝑟𝑈𝑛+1 + 𝑠𝑈𝑛 and 𝑉𝑛+2 = 𝑟𝑉𝑛+1 + 𝑠𝑉𝑛, with 𝑈0 = 0, 𝑈1 = 1, 𝑉0 = 2, 𝑉1 = 𝑟. In this paper, we give effective bounds for the solutions of the following Diophantine equations 𝑀𝑘 = 𝑈𝓁𝑈𝑚𝑈𝑛 and 𝑀𝑘 = 𝑉𝓁𝑉𝑚𝑉𝑛, where 𝓁, 𝑚, 𝑛 and 𝑘 are nonnegative integers and 𝓁 ≤ 𝑚 ≤ 𝑛. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell, Balancing sequences and their companions respectively.