The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptiveinnate immunity cross talk and accelerated disease progression.is the leading cause of age-related neurodegeneration, affecting over 5.2 million people in the United States alone (1). Pathologically, AD is characterized by two hallmark protein aggregates, amyloid-β (Aβ) plaques and neurofibrillary tangles, that are accompanied by neuroinflammation, including microgliosis, elevated cytokine production, and activation of complement pathways (2-5). Initially, microglia respond to and surround plaques, degrading Aβ by phagocytosis (for review, see refs. 6-8). However, chronic activation of these cells shift microglia to a more proinflammatory and less phagocytic state (9, 10). Although much of the data implicating microglia in AD has come from neuropathological investigation, recent genome-wide association studies have provided the first genetic evidence (to our knowledge) linking microglia dysfunction to AD, with the discovery of risk polymorphisms in several immune system genes: CR1, TREM2, CD33, HLA-DRB5, MS4A6A, and ABCA7 (8,(11)(12)(13)(14)(15).In contrast to the field's increasing understanding of the role of innate immunity in AD, comparatively little is known about whether the adaptive immune system might also influence AD. Those studies that have examined these peripheral populations have largely focused on questions about their potential as biomarkers or their role in active Aβ immunization (3, 16). However, the adaptive and innate immune systems rarely fu...