The coronary reperfusion following acute myocardial infarction can paradoxically trigger myocardial ischemia-reperfusion (IR) injury. This complex phenomenon involves the intricate interplay of different subsets of macrophages. These macrophages are crucial players in the post-infarction inflammatory response and subsequent myocardial anti-inflammatory repair. However, their diverse functions can lead to both beneficial and detrimental effects. On one hand, these macrophages play a crucial role in orchestrating the inflammatory response, aiding in the clearance of cellular debris and initiating tissue repair mechanisms. On the other hand, their excessive infiltration and activation can contribute to the perpetuation of the inflammatory cascade, leading to additional myocardial injury and adverse cardiac remodeling. Multiple mechanisms contribute to the IR injury mediated by macrophages, including oxidative stress, apoptosis, and autophagy. These processes further exacerbate the damage to the already vulnerable myocardial tissue. To address this delicate balance, therapeutic strategies aiming to target and modulate macrophage polarization and function are being explored. By fine-tuning the immune inflammatory response, such interventions hold promise in mitigating post-infarction myocardial injury and fostering a more favorable environment for myocardial healing and recovery. Through advancements in this area of research, potential anti-inflammatory interventions may pave the way for improved clinical outcomes and better management of patients after acute myocardial infarction.