Improved utilization of phytates and mineral phosphorus (P) in monogastric animals contributes significantly to preserving the finite resource of mineral P and mitigating environmental pollution. In order to identify pathways and to prioritize candidate genes related to P utilization (PU), the genomic heritability of 77 and 80 trait-dependent expressed miRNAs and mRNAs in 482 Japanese quail were estimated and eQTL (expression quantitative trait loci) were detected. In total, 104 miR-eQTL (microRNA expression quantitative traits loci) were associated with SNP markers (false discovery rate less than 10%) including 41 eQTL of eight miRNAs. Similarly, 944 mRNA-eQTL were identified at the 5% False discovery rate threshold, with 573 being cis-eQTL of 36 mRNAs. High heritabilities of miRNA and mRNA expression coincide with highly significant eQTL. Integration of phenotypic data with transcriptome and microbiome data of the same animals revealed genetic regulated mRNA and miRNA transcripts (SMAD3, CAV1, ENNPP6, ATP2B4, miR-148a-3p, miR-146b-5p, miR-16-5p, miR-194, miR-215-5p, miR-199-3p, miR-1388a-3p) and microbes (
Candidatus
Arthromitus
, Enterococcus
) that are associated with PU. The results reveal novel insights into the role of mRNAs and miRNAs in host gut tissue functions, which are involved in PU and other related traits, in terms of the genetic regulation and inheritance of their expression and in association with microbiota components.