2021
DOI: 10.1016/j.eqrea.2021.100001
|View full text |Cite
|
Sign up to set email alerts
|

Illuminating high-resolution crustal fault zones using multi-scale dense arrays and airgun source

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
8
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
8

Relationship

3
5

Authors

Journals

citations
Cited by 20 publications
(9 citation statements)
references
References 79 publications
0
8
0
1
Order By: Relevance
“…In order to precisely monitor the subtle seismic velocity changes associated with high seismicity in western Yunnan, a transmitting seismic station (TSS) composed of a large‐volume airgun array was first constructed in Binchuan in April 2011 (Wang et al., 2012). Subsequent cross‐correlation analyses of waveforms recorded by surrounding permanent and portable stations indicated the potential temporal variations of subsurface structures near the southern section of the Chenghai fault (Liu et al., 2021; Luan et al., 2022; Yang et al., 2021). Consequently, between January 5 and February 7 in 2018, a temporary dense linear array consisting of 125 stations was deployed across the Chenghai fault zone in the south part of the Binchuan basin (Figure 2).…”
Section: Tectonic Setting and Datamentioning
confidence: 99%
“…In order to precisely monitor the subtle seismic velocity changes associated with high seismicity in western Yunnan, a transmitting seismic station (TSS) composed of a large‐volume airgun array was first constructed in Binchuan in April 2011 (Wang et al., 2012). Subsequent cross‐correlation analyses of waveforms recorded by surrounding permanent and portable stations indicated the potential temporal variations of subsurface structures near the southern section of the Chenghai fault (Liu et al., 2021; Luan et al., 2022; Yang et al., 2021). Consequently, between January 5 and February 7 in 2018, a temporary dense linear array consisting of 125 stations was deployed across the Chenghai fault zone in the south part of the Binchuan basin (Figure 2).…”
Section: Tectonic Setting and Datamentioning
confidence: 99%
“…It does not depend on the occurrence and distribution of earthquakes and the location and excitation time of the active sources are accurate. Therefore, active sources such as explosions (e.g., Teves-Costa et al, 1996;Catchings et al, 2002;Cochran et al, 2009) and airguns (e.g., She et al, 2018;Shao et al, 2021;Yang et al, 2021) have been widely used in shallow velocity structure studies in recent years. The MGS experiments in the Tibetan Plateau (Ji et al, 2021) show that the frequency range of the seismic energy is 1-50 Hz, with the dominant range in 5-30 Hz.…”
Section: Dense Arrays and Active Source Datamentioning
confidence: 99%
“…Li et al (2020) revealed the high-speed intrusive rocks at shallow crust in the Tan-Lu fault zone in Lujiang, Anhui Province using dense array ambient noise tomography. Yang et al (2020Yang et al ( , 2021 found that there was a lowvelocity zone within the southern array of the Chenghai fault, Yunnan, but no such signature in the northern array using the data of the two dense linear arrays across the fault. These high-resolution fault zone images provide an important basis for earthquake rupture simulation and hazard assessment (e.g., Weng et al, 2016;Yang et al, 2021).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…除影响震级⼤⼩外, 地震滑移随深度的分布也受到震中位置的影响。在针对安宁河断 裂带的动⼒学模拟结果中, 同样利⽤震间闭锁得到应⼒分布(图 3a), 当破裂起始点发⽣ 变化时, 有的破裂会成为⾃停⽌破裂(图 3b), 形成中等强度的地震;有的会导致⼤地震, 但破裂不会到达地表(图 3c);有的则可能会冲破地表, 造成严重的近地表位移(图 3d), 震害严重。在后⾯两种情况⾥, 两者的震级相差 0.2, 并且成核区都处于⾼应⼒区, 甚⾄未能 到达地表的破裂起始位置所在的应⼒更⾼, 这说明浅部滑移分布与震中位置的应⼒⾼低并 ⾮简单的正⽐关系。这种与震中位置相关的破裂情景, 物理机制源于破裂前缘释放能量与 断层破裂能的空间分布 [10] 。因为⾮均匀应⼒分布状态的存在, 导致破裂前缘能量释放率与 震中位置密切相关, ⽽破裂前缘的能量释放率会决定破裂的空间展布暨最终震级。 1. 1.3 断裂带介质结构 除了断层⾯上的特征, 断层周围的介质属性对断层上的地震破裂发展也有着重要影响。 在近断层的观测尺度上, 介质存在较强的⾮均匀性。由于近断层区域在历史地震中经历了 强烈的地⾯运动, 该区域常伴有断层破碎带 [47][48][49][50] , 这类破碎带由⾼度破碎的岩⽯材料组成, 呈现出较低地震波速的地震学特征, 因此也被称为近断层低速带。近断层破碎带的跨断层 宽度通常在⼏⼗⽶到⼏千⽶的量级, 其地震波速度相⽐围岩低约 20%到 50% [51][52][53][54][55] 。作为⼀ 种常⻅的近断层⾮均匀特征, 断层破碎带不仅能放⼤地震波的地表震动 [56,57] 并引⼊复杂的 波场, 更能对断层⾯上的地震破裂过程产⽣影响。数值模拟的研究表明, 断层破碎带的存在 能够扩⼤地震的破裂延伸范围并影响地震震级的最终⼤⼩ [13] ;由于破碎带界⾯引⼊的反 射波与⾸波等复杂的地震波场调节了断层上破裂的传播速度以及滑移模式 [58,59] 。断层低 速带的存在也会影响由地⾯观测估算断层⾯上的摩擦参数结果, 造成⾼估的情况 [60] 。 此外, 断层的周边介质速度结构还可能存在跨断层两侧的不对称性, 即断层两侧存在 物质差异, ⼜称为双材料结构 [61,62] 。断层两侧的物质差异取决于断层的形成过程与环境, 差 异程度可以由地震波速度成像揭示, 在多个断层带均有发现。如⽟树地震的发震断层上, 断 层带⾸波研究观测到 5%~8%的波速差异 [63] ;北安纳托利亚断层两侧约有 6%的纵波速度 差异 [64] ;圣安德烈斯断层两侧的介质地震波速度差在 5%~30%之间 [62] 。这种断层的双材 料结构可影响地震破裂发展的⽅向性, 从⽽影响断层周围的地表震动与灾害分布。破裂动 ⼒学模拟研究结果显示, 当断层两侧介质存在速度差异时, 地震破裂将存在⼀个优先破裂⽅ 向, 与较慢波速⼀侧介质的运动⽅向⼀致 [61] 。考虑双材料结构的影响并估计优先破裂⽅向, 对于区域地震灾害评估, 尤其是在⼈⼝聚集区具有积极意义。 2. 1.4 孕震带尺度 断层上孕震带区域的⼏何特征可以影响地震破裂的发展和传播。作为地震破裂发⽣的 区域, 孕震带的空间范围是有界的。由于受到地壳内温压条件的影响, 地震破裂只能发⽣在 ⼀定的深度范围内 [65,66] , 从⽽限制孕震带在沿断层倾向的宽度。作为孕震带的⼀项基本⼏ 何特征, 孕震带的有限宽度影响着地震破裂的发展。观测数据表明, 倾滑地震的破裂⻓度随 宽度的增加⽽增加, 两者之间的⽐值⼀般不超过 8(图 4a);但⾛滑地震则不同, 当破裂达 到整个孕震带宽度(孕震带饱和现象)前后, 地震破裂的震源参数存在着不同的尺度关系 [67][68][69][70] , 破裂的⻓度/宽度⽐具有很⼤的变化(图 4b)。部分⾛滑地震(M W >7)的破裂⻓度 远超其破裂宽度, 其⽐值⾼达 40(图 4b)。观测数据表明, 孕震带的宽度对破裂的发展及 最终地震的震级存在着控制作⽤, ⽽破裂动⼒学数值模拟研究的结果也揭示了其内在的机 理 [71] 。若⾛滑断层孕震带宽度有限(⼩于 10 km) , 破裂会成为⾃停⽌模式(selfarresting), 震级有限;随着孕震带宽度的增⼤, 同等初始条件下地震破裂的模式会从⾃停 ⽌破裂向逃逸(breakaway)破裂转化, 造成更⼤的地震破裂规模和最终地震震级。同时, 孕震带宽度也能影响近断层地表运动, 并影响从地表估算摩擦参数的视趋势 [60] 在⼀些较⻓的断层上, 孕震带的⼏何特征还存在沿⾛向的变化, 并影响断层上的破裂发 展。例如孕震断层在⾛...…”
unclassified