Summary
Cell pairing is central for many processes, including immune defense, neuronal connection, hyphal fusion or sexual reproduction. How does a cell orient towards a partner, especially when faced with multiple choices? Fission yeast Schizosaccharomyces pombe P- and M-cells, which respectively express P- and M-factor pheromones [1, 2], pair during the mating process induced by nitrogen starvation. Engagement of pheromone receptors Map3 and Mam2 [3, 4] with their cognate pheromone ligands leads to activation of the Gα-protein Gpa1 to signal sexual differentiation [3, 5, 6]. Prior to cell pairing, the Cdc42 GTPase, a central regulator of cell polarization, forms dynamic zones of activity at the cell periphery at distinct locations over time [7]. Here, we show that Cdc42-GTP polarization sites contain the M-factor transporter Mam1, the general secretion machinery, which underlies P-factor secretion, and Gpa1, suggesting these are sub-cellular zones of pheromone secretion and signaling. Zone lifetimes scale with pheromone concentration. Computational simulations of pair formation through a fluctuating zone show that the combination of local pheromone release and sensing, short pheromone decay length, and pheromone-dependent zone stabilization leads to efficient pair formation. Consistently, pairing efficiency is reduced in absence of the P-factor protease. Similarly, zone stabilization at reduced pheromone levels, which occurs in absence of the predicted GTPase-activating protein for Ras, leads to reduction in pairing efficiency. We propose that efficient cell pairing relies on a fluctuating local signal emission and perception, which become locked into place through stimulation.