The verification of image integrity has attracted increasing attention. Irreversible algorithms embed fragile watermarks into cover images to verify their integrity, but they are not reversible due to unrecoverable loss. In this paper, a new dual tampering detection scheme for reversible image fragile watermarking is proposed. The insect matrix reversible embedding algorithm is used to embed the watermark into the cover image. The cover image can be fully recovered when the dual-fragile-watermarked images are not tampered with. This study adopts two recovery schemes and adaptively chooses the most appropriate scheme to recover tampered data according to the square errors between the tampered data and the recovered data of two watermarked images. Tampering coincidence may occur when a large region of the fragile-watermarked image is tampered with, and the recovery information corresponding to the tampered pixels may be missing. The tampering coincidence problem is solved using image-rendering techniques. The experimental results show that the PSNR value of the watermarked image obtained using our scheme can reach 46.37 dB, and the SSIM value is 0.9942. In addition, high-accuracy tampering detection is achieved.