Currency recognition is one of the essential things since everyone in any country must know money. Therefore, computer vision has been developed to recognize currency. One of the currency recognition uses the SIFT algorithm. The recognition results are very accurate, but the processing takes a considerable amount of time, making it impossible to run for real-time data such as video. AKAZE algorithm has been developed for real-time data processing because of its fast computation time to process video data frames. This study proposes the faster real-time currency recognition system on video using the AKAZE algorithm. The purpose of this study is to compare the SIFT and AKAZE algorithms related to a real-time video data processing to determine the value of F1 and its speed. Based on the experimental results, the AKAZE algorithm is resulting F1 value of 0.97, and the processing speed on each video frame is 0.251 seconds. Then at the same video resolution, the SIFT algorithm results in an F1 value of 0.65 and a speed of 0.305 seconds to process one frame. These results show that the AKAZE algorithm is faster and more accurate in processing video data.