This study aims to describe a model that will apply image processing and traditional machine learning techniques specifically Support Vector Machines, Naïve-Bayes, and k-Nearest Neighbors to identify whether or not a given breast histopathological image has Invasive Ductal Carcinoma (IDC). The dataset consisted of 54,811 breast cancer image patches of size 50px x 50px, consisting of 39,148 IDC negative and 15,663 IDC positive. Feature extraction was accomplished using Oriented FAST and Rotated BRIEF (ORB) descriptors. Feature scaling was performed using Min-Max Normalization while K-Means Clustering on the ORB descriptors was used to generate the visual codebook. Automatic hyperparameter tuning using Grid Search Cross Validation was implemented although it can also accept user supplied hyperparameter values for SVM, Naïve Bayes, and K-NN models should the user want to do experimentation. Aside from computing for accuracy, the AUPRC and MCC metrics were used to address the dataset imbalance. The results showed that SVM has the best overall performance, obtaining accuracy = 0.7490, AUPRC = 0.5536, and MCC = 0.2924.