“…Stanford Dogs MIT Indoor 67 Method Acc (%) Method Acc (%) Method Acc (%) (Bossard, Guillaumin, and Van Gool 2014) 50.76 (Huang et al 2017) 78.30 (Milad and Subhasis 2016) 72.20 (Bossard, Guillaumin, and Van Gool 2014) 56.40 (Wei et al 2017) 78.86 (Dixit et al 2015) 72.86 (Meyers et al 2015) 79.00 (Chen and Zhang 2016) 79.50 (Lin, RoyChowdhury, and Maji 2018) 79.00 (Li et al 2018) 82.60 (Zhang et al 2016) 80.43 (Zhou et al 2018) 79.76 (Wei et al 2018) 85.70 (Dubey et al 2018) 83.75 (Yoo et al 2015) 80.78 (Guo et al 2018) 87.30 (Niu, Veeraraghavan, and Sabharwal 2018) 85.16 (Herranz, Jiang, and Li 2016) 80.97 (Hassannejad et al 2016) 88.28 (Krause et al 2016) 85.90 (Guo et al 2017) as D clean +f t), and previous works: Bottom-up , Pseudo-label (Lee 2013), Weakly (Joulin et al 2016), Boosting , PGM (Xiao et al 2015), WSL (Chen and Gupta 2015), Harnessing (Vo et al 2017), Goldfince (Krause et al 2016) that also employ and process web data for training CNN models. Different from the above methods which focus on data pre-processing, we optimize the model to learn from the web and standard data by reducing the influence of dataset gap.…”