Radiation damage and stimulated desorption of nucleotides 2′-deoxyadenosine 5′-monophosphate (dAMP), adenosine 5′-monophosphate (rAMP), 2′-deoxycytidine 5′-monophosphate (dCMP), and cytidine 5′-monophosphate (rCMP) deposited on Au have been measured using x-rays as both the probe and source of low energy secondary electrons. The fluence dependent behavior of the O-1s, C-1s, and N-1s photoelectron transitions was analyzed to obtain phosphate, sugar, and nucleobase damage cross sections. Although x-ray induced reactions in nucleotides involve both direct ionization and excitation, the observed bonding changes were likely dominated by the inelastic energy-loss channels associated with secondary electron capture and transient negative ion decay. Growth of the integrated peak area for the O-1s component at 531.3 eV, corresponding to cleavage of the C—O—P phosphodiester bond, yielded effective damage cross sections of about 23 Mb and 32 Mb (1 Mb = 10−18 cm2) for AMP and CMP molecules, respectively. The cross sections for sugar damage, as determined from the decay of the C-1s component at 286.4 eV and the glycosidic carbon at 289.0 eV, were slightly lower (about 20 Mb) and statistically similar for the r- and d- forms of the nucleotides. The C-1s component at 287.6 eV, corresponding to carbons in the nucleobase ring, showed a small initial increase and then decayed slowly, yielding a low damage cross section (∼5 Mb). Although there is no statistical difference between the sugar forms, changing the nucleobase from adenine to cytidine has a slight effect on the damage cross section, possibly due to differing electron capture and transfer probabilities.