In digital image processing, filtering noise is an important step for reconstructing a high-quality image for further processing such as object segmentation, object detection, and object recognition. Various image-denoising approaches, including median, Gaussian, and bilateral filters, are available in the literature. Since convolutional neural networks (CNN) are able to directly learn complex patterns and features from data, they have become a popular choice for image-denoising tasks. As a result of their ability to learn and adapt to various denoising scenarios, CNNs are powerful tools for image denoising. Some deep learning techniques such as CNN incorporate denoising strategies directly into the CNN model layers. A primary limitation of these methods is their necessity to resize images to a consistent size. This resizing can result in a loss of vital image details, which might compromise CNN’s effectiveness. Because of this issue, we utilize a traditional denoising method as a preliminary step for noise reduction before applying CNN. To our knowledge, a comparative performance study of CNN using traditional and embedded denoising against a baseline approach (without denoising) is yet to be performed. To analyze the impact of denoising on the CNN performance, in this paper, firstly, we filter the noise from the images using traditional means of denoising method before their use in the CNN model. Secondly, we embed a denoising layer in the CNN model. To validate the performance of image denoising, we performed extensive experiments for both traffic sign and object recognition datasets. To decide whether denoising will be adopted and to decide on the type of filter to be used, we also present an approach exploiting the peak-signal-to-noise-ratio (PSNRs) distribution of images. Both CNN accuracy and PSNRs distribution are used to evaluate the effectiveness of the denoising approaches. As expected, the results vary with the type of filter, impact, and dataset used in both traditional and embedded denoising approaches. However, traditional denoising shows better accuracy, while embedded denoising shows lower computational time for most of the cases. Overall, this comparative study gives insights into whether denoising will be adopted in various CNN-based image analyses, including autonomous driving, animal detection, and facial recognition.