We describe a fully automated processing pipeline to support the noninvasive absolute quantification of the cerebral metabolic rate for glucose (CMRGlc) in a clinical setting. This pipeline takes advantage of "anatometabolic" information associated with fully integrated PET/MRI. Methods: Ten healthy volunteers (5 men and /5 women; 27 ± 7 y old; 70 ± 10 kg) underwent a test-retest 18 F-FDG PET/MRI examination of the brain. The imaging protocol consisted of a 60-min PET list-mode acquisition with parallel MRI acquisitions, including 3-dimensional time-of-flight MR angiography, MRI navigators, and a T1-weighted MRI scan. State-of-the-art MRI-based attenuation correction was derived from T1-weighted MRI (pseudo-CT [pCT]). For validation purposes, a low-dose CT scan was also performed. Arterial blood samples were collected as the reference standard (arterial input function [AIF]). The developed pipeline allows the derivation of an image-derived input function (IDIF), which is subsequently used to create CMRGlc maps by means of a Patlak analysis. The pipeline also includes motion correction using the MRI navigator sequence as well as a novel partial-volume correction that accounts for background heterogeneity. Finally, CMRGlc maps are used to generate a normative database to facilitate the detection of metabolic abnormalities in future patient scans. To assess the performance of the developed pipeline, IDIFs extracted by both CT-based attenuation correction (CT-IDIF) and MRI-based attenuation correction (pCT-IDIF) were compared with the reference standard (AIF) using the absolute percentage difference between the areas under the curves as well as the absolute percentage difference in regional CMRGlc values. Results: The absolute percentage differences between the areas under the curves for CT-IDIF and pCT-IDIF were determined to be 1.4% ± 1.0% and 3.4% ± 2.6%, respectively. The absolute percentage difference in regional CMRGlc values based on CT-IDIF and pCT-IDIF differed by less than 6% from the reference values obtained from the AIF. Conclusion: By taking advantage of the capabilities of fully integrated PET/MRI, we developed a fully automated computational pipeline that allows the noninvasive determination of regional CMRGlc values in a clinical setting. This methodology might facilitate the proliferation of fully quantitative imaging into the clinical arena and, as a result, might contribute to improved diagnostic efficacy.