Abstract-Sidelobes of strong targets substantially impact image quality of synthetic aperture radar (SAR) using linear frequency modulation (LFM) waveform, especially in urban areas. A novel space-borne azimuth multi-channel SAR scheme with ultra-low range sidelobe-ratio (RSLR) performance was proposed, employing complete complementary sequence (CC-S) coding waveform.The CC-S waveform was utilized to acquire ultra-low RSLR performance in range direction. Azimuth multi-channel scheme was introduced, to compensate reduction of effective PRF due to employing CC-S, and to mitigate azimuth resolution lost resulted from strong azimuth weighting, in order to implement low side-lobe performance in both range and azimuth direction. The method for pre-processing the CC-S based multi-channel SAR data was proposed, which would both compensate receiving time difference of sub-sequences and reconstruct azimuth spectrum of multi-channel SAR data. Furthermore, the corresponding image formation algorithm for accurately focusing raw data of the SAR system was also proposed. Computer simulation results were presented, which demonstrated the validity of the proposed SAR scheme and image formation algorithm.