BACKGROUND AND PURPOSE: Synthetic MR imaging is a time-efficient technique. However, its rather long scan time can be challenging for children. This study aimed to evaluate the clinical feasibility of accelerated synthetic MR imaging with deep learningbased reconstruction in pediatric neuroimaging and to investigate the impact of deep learning-based reconstruction on image quality and quantitative values in synthetic MR imaging.
MATERIALS AND METHODS:This study included 47 children 2.3-14.7 years of age who underwent both standard and accelerated synthetic MR imaging at 3T. The accelerated synthetic MR imaging was reconstructed using a deep learning pipeline. The image quality, lesion detectability, tissue values, and brain volumetry were compared among accelerated deep learning and accelerated and standard synthetic data sets.
RESULTS:The use of deep learning-based reconstruction in the accelerated synthetic scans significantly improved image quality for all contrast weightings (P , .001), resulting in image quality comparable with or superior to that of standard scans. There was no significant difference in lesion detectability between the accelerated deep learning and standard scans (P . .05). The tissue values and brain tissue volumes obtained with accelerated deep learning and the other 2 scans showed excellent agreement and a strong linear relationship (all, R 2 . 0.9). The difference in quantitative values of accelerated scans versus accelerated deep learning scans was very small (tissue values, ,0.5%; volumetry, À1.46%-0.83%).
CONCLUSIONS:The use of deep learning-based reconstruction in synthetic MR imaging can reduce scan time by 42% while maintaining image quality and lesion detectability and providing consistent quantitative values. The accelerated deep learning synthetic MR imaging can replace standard synthetic MR imaging in both contrast-weighted and quantitative imaging.