Event-based sensors are a novel sensing technology which capture the dynamics of a scene via pixel-level change detection. This technology operates with high speed (>10 kHz), low latency (10 μs), low power consumption (<1 W), and high dynamic range (120 dB). Compared to conventional, frame-based architectures that consistently report data for each pixel at a given frame rate, event-based sensor pixels only report data if a change in pixel intensity occurred. This affords the possibility of dramatically reducing the data reported in bandwidth-limited environments (e.g., remote sensing) and thus, the data needed to be processed while still recovering significant events. Degraded visual environments, such as those generated by fog, often hinder situational awareness by decreasing optical resolution and transmission range via random scattering of light. To respond to this challenge, we present the deployment of an event-based sensor in a controlled, experimentally generated, well-characterized degraded visual environment (a fog analogue), for detection of a modulated signal and comparison of data collected from an event-based sensor and from a traditional framing sensor.