Color is difficult to distinguish by human vision and is described by keywords, resulting in low efficiency of wool fabric retrieval in factories at present. To obtain the process sheets of existing products and reduce the work of color measurement in sample analysis, this paper proposes an effective method based on dominant colors (DCs) and color moments (CMs) for wool fabric image retrieval. Firstly, the image was scaled to reduce computational time. Then, the hue, saturation, value color space was divided into 128 parts by the fast color quantization algorithm to extract the DCs of the image. Meanwhile, the CMs based on image partition were calculated in CIE L* a* b* color space to describe the spatial color information. Subsequently, different similarity measure methods were carried out based on the DC feature and CM feature. Finally, experiments were conducted on a wool fabric image database with 20,000 images for parameter optimization and verification. The average precision and recall were up to 87% and 44%, respectively. Experimental results show that the proposed scheme can retrieve images with the same or similar colors quickly and effectively and it outperformed other methods, providing referential assistance for the factory worker when retrieving wool fabrics.