Hierarchy of one-dimensional ergodic chaotic maps with Tsallis type of q-deformation are studied. We find that in the chaotic region, these maps with q-deformation are ergodic as the Birkhoff ergodic theorem predicts. q-deformed maps are defined as ratios of polynomials of degree N. Hence, by using the Stieltjes transform approach (STA), invariant measure is proposed. In addition, considering Sinai-Ruelle-Bowen (SRB) measure, Kolmogorov-Sinai (KS) entropy for q-deformed maps is calculated analytically. The new q-deformed scheme have ability to keep previous significant properties such as ergodicity, sensitivity to initial condition. By adding q-parameter to the hierarchy in order increase the randomness and oneway computation, we present a new scheme for watermarking. The introduced algorithm tries to improve the problem of failure of encryption such as small key space, encryption speed and level of security. To illustrate the effectiveness of the proposed scheme, some security analyses are presented. By considering the obtained results, it can be concluded that, this scheme have a high potential to be adopted for watermarking. It can be concluded that, the proposed novel watermarking scheme for image authentication can be applied for practical applications.