2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA) 2015
DOI: 10.1109/iwcia.2015.7449483
|View full text |Cite
|
Sign up to set email alerts
|

Image thresholding based on index of fuzziness and fuzzy similarity measure

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
12
0
4

Year Published

2016
2016
2022
2022

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 9 publications
(16 citation statements)
references
References 8 publications
0
12
0
4
Order By: Relevance
“…Pratamasunu [23] mengusulkan metode image thresholding dengan penentuan threshold berdasarkan similarity antar gray level menggunakan fuzzy similarity measure dengan mempertimbangkan fungsi keanggotaan fuzzy set dan bentuk histogram. Pada penelitian ini, penentuan fuzzy region dilakukan secara otomatis berdasarkan index of fuzziness terbesar pada setiap gray level [24].…”
Section: Pengukuran Fuzzy Similarityunclassified
See 3 more Smart Citations
“…Pratamasunu [23] mengusulkan metode image thresholding dengan penentuan threshold berdasarkan similarity antar gray level menggunakan fuzzy similarity measure dengan mempertimbangkan fungsi keanggotaan fuzzy set dan bentuk histogram. Pada penelitian ini, penentuan fuzzy region dilakukan secara otomatis berdasarkan index of fuzziness terbesar pada setiap gray level [24].…”
Section: Pengukuran Fuzzy Similarityunclassified
“…Pada penelitian ini dilakukan evaluasi terhadap pengukuran fuzzy similarity yang diusulkan oleh [23] dengan menentukan nilai threshold global pada citra. Pada Gambar 12 menunjukan hasil segmentasi [23] dengan penentuan parameter dan dihitung berdasarkan index of fuzziness pada citra.…”
Section: Lokal Fuzzy Thresholdingunclassified
See 2 more Smart Citations
“…Gulpi Qorik Oktagalu Pratamasunu et al [6].In this paper, an automatic image thresholding method based on the index of fuzziness and fuzzy similarity measure is presented. This work overcomes some limitations of an existing method concerning the definition of the initial seed intervals and low contrast images.…”
Section: Introductionmentioning
confidence: 99%