We summarize the tasks, protocol, and outcome for the 6th Competition on Recognition of Handwritten Mathematical Expressions (CROHME), which includes a new formula detection in document images task (+ TFD). For CROHME + TFD 2019, participants chose between two tasks for recognizing handwritten formulas from 1) online stroke data, or 2) images generated from the handwritten strokes. To compare L A T E X strings and the labeled directed trees over strokes (label graphs) used in previous CROHMEs, we convert L A T E X and stroke-based label graphs to label graphs defined over symbols (symbol-level label graphs, or symLG). More than thirty (33) participants registered for the competition, with nineteen (19) teams submitting results. The strongest formula recognition results were produced by the USTC-iFLYTEK research team, for both stroke-based (81%) and image-based (77%) input. For the new typeset formula detection task, the Samsung R&D Institute Ukraine (Team 2) obtained a very strong F-score (93%). System performance has improved since the last CROHME-still, the competition results suggest that recognition of handwritten formulae remains a difficult structural pattern recognition task.