Face recognition (FR) has been extensively studied, due to both scientific fundamental challenges and current and potential applications where human identification is needed. FR systems have the benefits of their non intrusiveness, low cost of equipments and no useragreement requirements when doing acquisition, among the most important ones.
Nevertheless, despite the progress made in last years and the different solutions proposed, FR performance is not yet satisfactory when more demanding conditions are required (different viewpoints, blocked effects, illumination changes, strong lighting states, etc). Particularly, the effect of such non-controlled lighting conditions on face images leads to one of the strongest distortions in facial appearance.
This dissertation addresses the problem of FR when dealing with less constrained illumination situations. In order to approach the problem, a new multi-session and multi-spectral face database has been acquired in visible, Near-infrared (NIR) and Thermal infrared (TIR) spectra,
under different lighting conditions.
A theoretical analysis using information theory to demonstrate the complementarities between different spectral bands have been firstly carried out. The optimal exploitation of the information provided by the set of multispectral images has been subsequently addressed by
using multimodal matching score fusion techniques that efficiently synthesize complementary meaningful information among different spectra.
Due to peculiarities in thermal images, a specific face segmentation algorithm has been required and developed. In the final proposed system, the Discrete Cosine Transform as dimensionality reduction tool and a fractional distance for matching were used, so that the cost in processing time and memory was significantly reduced. Prior to this classification task, a selection of the relevant frequency bands is proposed in order to optimize the overall system, based on identifying and maximizing independence relations by means of discriminability
criteria. The system has been extensively evaluated on the multispectral face database specifically performed for our purpose. On this regard, a new visualization procedure has been suggested in order to combine different bands for establishing valid comparisons and giving statistical information about the significance of the results. This experimental framework has more easily enabled the improvement of robustness against training and testing illumination mismatch. Additionally, focusing problem in thermal spectrum has been also addressed, firstly, for the more general case of the thermal images (or thermograms), and then for the case of facialthermograms from both theoretical and practical point of view. In order to analyze the quality of such facial thermograms degraded by blurring, an appropriate algorithm has been successfully developed.
Experimental results strongly support the proposed multispectral facial image fusion, achieving very high performance in several conditions. These results represent a new advance in providing a robust matching across changes in illumination, further inspiring highly accurate
FR approaches in practical scenarios.
El reconeixement facial (FR) ha estat àmpliament estudiat, degut tant als reptes fonamentals científics que suposa com a les aplicacions actuals i futures on requereix la identificació de les persones. Els sistemes de reconeixement facial tenen els avantatges de ser no intrusius,presentar un baix cost dels equips d’adquisició i no la no necessitat d’autorització per part de l’individu a l’hora de realitzar l'adquisició, entre les més importants. De totes maneres i malgrat els avenços aconseguits en els darrers anys i les diferents solucions proposades, el rendiment del FR encara no resulta satisfactori quan es requereixen condicions més exigents (diferents punts de vista,
efectes de bloqueig, canvis en la il·luminació, condicions de llum extremes, etc.). Concretament, l'efecte d'aquestes variacions no controlades en les condicions d'il·luminació sobre les imatges facials condueix a una de les distorsions més accentuades sobre l'aparença
facial.
Aquesta tesi aborda el problema del FR en condicions d'il·luminació menys restringides. Per tal d'abordar el problema, hem adquirit una nova base de dades de cara multisessió i multiespectral en l'espectre infraroig visible, infraroig proper (NIR) i tèrmic (TIR), sota diferents condicions d'il·luminació. En primer lloc s'ha dut a terme una anàlisi teòrica utilitzant la teoria de la informació per demostrar la complementarietat entre les diferents bandes espectrals objecte d’estudi. L'òptim aprofitament de la informació proporcionada pel conjunt d'imatges multiespectrals s'ha abordat posteriorment mitjançant l'ús de tècniques de fusió de puntuació multimodals, capaces de sintetitzar de manera eficient el conjunt d’informació significativa complementària entre els diferents espectres. A causa de les característiques particulars de les imatges tèrmiques, s’ha requerit del desenvolupament d’un algorisme específic per la segmentació de les mateixes. En el sistema proposat final, s’ha utilitzat com a eina de reducció de la dimensionalitat de les imatges, la Transformada del Cosinus Discreta i una distància fraccional per realitzar les tasques de classificació de manera que el cost en temps de processament i de memòria es va reduir de
forma significa. Prèviament a aquesta tasca de classificació, es proposa una selecció de les bandes de freqüències més rellevants, basat en la identificació i la maximització de les relacions d'independència per mitjà de criteris discriminabilitat, per tal d'optimitzar el conjunt del
sistema. El sistema ha estat àmpliament avaluat sobre la base de dades de cara multiespectral, desenvolupada pel nostre propòsit. En aquest sentit s'ha suggerit l’ús d’un nou procediment de visualització per combinar diferents bandes per poder establir comparacions vàlides i donar informació estadística sobre el significat dels resultats. Aquest marc experimental ha permès més fàcilment la millora de la robustesa quan les condicions d’il·luminació eren diferents entre els processos d’entrament i test.
De forma complementària, s’ha tractat la problemàtica de l’enfocament de les imatges en l'espectre tèrmic, en primer lloc, pel cas general de les imatges tèrmiques (o termogrames) i posteriorment pel cas concret dels termogrames facials, des dels punt de vista tant teòric com
pràctic. En aquest sentit i per tal d'analitzar la qualitat d’aquests termogrames facials degradats per efectes de desenfocament, s'ha desenvolupat un últim algorisme. Els resultats experimentals recolzen fermament que la fusió d'imatges facials multiespectrals proposada assoleix un rendiment molt alt en diverses condicions d’il·luminació. Aquests resultats representen un nou avenç en l’aportació de solucions robustes quan es contemplen canvis en la il·luminació, i esperen poder inspirar a futures implementacions de sistemes de reconeixement facial precisos en escenaris no controlats.