2022
DOI: 10.48550/arxiv.2204.02441
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Imaging Conductivity from Current Density Magnitude using Neural Networks

Bangti Jin,
Xiyao Li,
Xiliang Lu

Abstract: Conductivity imaging represents one of the most important tasks in medical imaging. In this work we develop a neural network based reconstruction technique for imaging the conductivity from the magnitude of the internal current density. It is achieved by formulating the problem as a relaxed weighted least-gradient problem, and then approximating its minimizer by standard fully connected feedforward neural networks. We derive bounds on two components of the generalization error, i.e., approximation error and st… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 55 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?