Neuroplasticity following bilateral deafness and auditory restoration has been repeatedly investigated. In clinical practice, however, a significant number of patients present a severe-to-profound unilateral hearing loss (UHL). To date, less is known about the neuroplasticity following monaural hearing deprivation and auditory input restoration. This article provides an overview of the current research insights on the impact of UHL on the brain and the effect of auditory input restoration with a cochlear implant (CI). An exhaustive systematic review of the literature was performed selecting 38 studies that apply different neural analyses techniques. The main results show that the hearing ear becomes functionally dominant after monaural deprivation, reshaping the lateralization of the neural network for auditory processing, a process that can be considered to influence auditory restoration. Furthermore, animal models predict that the onset time of UHL impacts auditory restoration. Hence, the results seem to advocate for early restoration of UHL, although further research is required to disambiguate the effects of duration and onset of UHL on auditory restoration and on structural neuroplasticity following UHL deprivation and restoration. Ongoing developments on CI devices compatible with Magnetic Resonance Imaging (MRI) examinations will provide a unique opportunity to investigate structural and functional neuroplasticity following CI restoration more directly.The review by Van Wieringen et al. on the etiology of congenital UHL reported that congenital causes mainly consist of cytomegalovirus infection, congenital nerve deficiency, syndromal causes, bacterial meningitis, inner ear malformation, or unknown etiology. In older children and adults, predominant acquired causes of UHL include vestibular schwannoma (34 per million per year), trauma (due to temporal bone fracture), Ramsay Hunt syndrome (herpes zoster virus), auto-immune hearing loss, Menière's disease and idiopathic sudden sensorineural hearing loss (incidence of 27 per 100,000), chronic otitis media, and failed middle ear surgery, rendering the prevalence much higher [1,2]. UHL has been shown to decrease sound localization, a central binaural hearing process [3]. Moreover, UHL during early childhood negatively impacts the development of oral language (for a review on language impact, see Van Wieringen et al. [1]). Compared to bilateral deafness, dedicated research on UHL is more recent and less is known about the neural changes following UHL. Hence, the primary objective of the present study is to summarize and evaluate current research insights on structural and functional brain plasticity following unilateral hearing deprivation caused by UHL. In the present systematic review, neural plasticity is studied both in auditory and non-auditory cortices. We thereby especially emphasize factors that can potentially influence the observed neural plasticity, such as the age of onset of the UHL, the duration of the UHL, and the deafness side. For the age of onse...