Neuritic plaques are a defining feature of Alzheimer disease (AD) pathology. These structures are composed of extracellular accumulations of amyloid-β peptide (Aβ) and other plaque-associated proteins, surrounded by large, swollen axons and dendrites (dystrophic neurites) and activated glia. Dystrophic neurites are thought to disrupt neuronal function, but whether this damage is static, dynamic, or reversible is unknown. To address this, we monitored neuritic plaques in the brains of living PDAPP;Thy-1:YFP transgenic mice, a model that develops AD-like pathology and also stably expresses yellow fluorescent protein (YFP) in a subset of neurons in the brain. Using multiphoton microscopy, we observed and monitored amyloid through cranial windows in PDAPP;Thy-1:YFP double-transgenic mice using the in vivo amyloid-imaging fluorophore methoxy-X04, and individual YFP-labeled dystrophic neurites by their inherent fluorescence. In vivo studies using this system suggest that amyloid-associated dystrophic neurites are relatively stable structures in PDAPP;Thy-1:YFP transgenic mice over several days. However, a significant reduction in the number and size of dystrophic neurites was seen 3 days after Aβ deposits were cleared by anti-Aβ antibody treatment. This analysis suggests that ongoing axonal and dendritic damage is secondary to Aβ and is, in part, rapidly reversible.
IntroductionAlzheimer disease (AD) is a neurodegenerative disorder that results in memory deficits, changes in personality, and cognitive decline. It is the leading cause of dementia in the US, affecting approximately 10% of those over 65 and 50% of those over 85 years of age. One of the invariant pathological hallmarks of AD is the presence of neuritic plaques in areas of the brain responsible for memory and cognition. Neuritic plaques consist predominantly of extracellular fibrils of amyloid-β peptide (Aβ) and are closely associated with dystrophic neurites, activated microglia, and reactive astrocytes (1-3). The actual mechanisms that contribute to the pathogenesis of AD are not known; however, compelling genetic and biochemical evidence suggests that accumulation of amyloid-β protein plays a central role. Thus, preventing or reversing the formation of amyloid may be a viable treatment.The dystrophic neurites that surround amyloid deposits are markedly swollen, distorted axons and dendrites. In AD, the number of dystrophic neurites has been shown to correlate with the clinical severity of dementia (4), and neuronal dystrophy is associated with synaptic loss in cortical cultures exposed to fibrillar Aβ (5). Studies in human AD and in transgenic models suggest that alterations in dendritic curvature and morphology, including neuritic dystrophy, that are associated with deposits of fibrillar Aβ