Atherosclerosis is a chronic widespread cardiovascular disease and a major predisposing factor for cardiovascular events, among which there are myocardial infarction and ischemic stroke. Atherosclerotic plaque formation is a process that involves different mechanisms, of which inflammation is the most common. Plenty of radiopharmaceuticals were developed to elucidate the process of plaque formation at different stages, some of which were highly specific for atherosclerotic plaque. This review summarizes the current nuclear medicine imaging landscape of preclinical and small-scale clinical studies of these specific RPs, which are not as widespread as labeled FDG, sodium fluoride, and choline. These include oxidation-specific epitope imaging, macrophage, and other cell receptors visualization, neoangiogenesis, and macrophage death imaging. It is shown that specific radiopharmaceuticals have strength in pathophysiologically sound imaging of the atherosclerotic plaques at different stages, but this also may induce problems with the signal registration for low-volume plaques in the vascular wall.