Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper studies the problem of electromagnetic fields observed outside of an infinite metallic casing due to dipolar excitations inside the pipe. Closed-form expressions are derived for the hertz vector potential driving the solution of the boundary value problem. The results indicates that the fields outside the casing are due to a distribution of vertical dipoles that decay in strength away from the true source. Analytical expressions are also obtained for the induced source distribution, as a function of the geometry and electric properties of the system. For the transverse magnetic mode (electric dipole source), the sources represent an electric current channeled vertically along the casing, whereas for the transverse electric mode (magnetic dipole source), they represent a distribution of induced magnetic moments. The strength of the current channeling decays exponentially away from the source, whereas the strength of the induced magnetic moment drops within the first few meters. The expressions obtained for the fields due to a magnetic dipole reveals that the effect of the casing yields a multiplicative complex constant, which attenuates the dipolar-type field. This effect has been observed experimentally in crosswell surveys, but it has never been formally proven. The fields due to an electric dipole excitation describe an inhomogeneous cylindrical surface wave propagating and attenuating in the radial and vertical directions.
This paper studies the problem of electromagnetic fields observed outside of an infinite metallic casing due to dipolar excitations inside the pipe. Closed-form expressions are derived for the hertz vector potential driving the solution of the boundary value problem. The results indicates that the fields outside the casing are due to a distribution of vertical dipoles that decay in strength away from the true source. Analytical expressions are also obtained for the induced source distribution, as a function of the geometry and electric properties of the system. For the transverse magnetic mode (electric dipole source), the sources represent an electric current channeled vertically along the casing, whereas for the transverse electric mode (magnetic dipole source), they represent a distribution of induced magnetic moments. The strength of the current channeling decays exponentially away from the source, whereas the strength of the induced magnetic moment drops within the first few meters. The expressions obtained for the fields due to a magnetic dipole reveals that the effect of the casing yields a multiplicative complex constant, which attenuates the dipolar-type field. This effect has been observed experimentally in crosswell surveys, but it has never been formally proven. The fields due to an electric dipole excitation describe an inhomogeneous cylindrical surface wave propagating and attenuating in the radial and vertical directions.
Peripheral water flooding has been the preferred pressure maintenance tool for many gulf carbonate reservoirs over the past 30 years. Due to uneven sweep and pressure distribution, this technique has given way to pattern floods in several gulf fields. As these new floods are established, it is important to understand the water saturation between wells to properly manage the sweep and recovery. In 2007, ADCO initiated water injection (WI) and WAG pilots to test the recovery strategy. The pilot employs advanced geophysical and modeling tools to measure formation properties at the wells and between wells; this paper discusses the WI pilot. Among the novel techniques applied is the crosswell electromagnetic method, which measures the interwell resistivity distribution between observation wells at the pilots. Interwell resistivity data can be used to infer the water saturation distribution because of the sharply different electrical resistivity between injected water and oil bearing reservoir rock. By allowing an evaluation of the water distribution long before the injected fronts reach producers or observers, a better and more rapid understanding of the pilot arises from the crosswell electromagnetic technique. In this paper, we briefly describe the pilot design, describe the detailed geological model and show results from the initial set of baseline and time lapse EM data sets from the water injection pilot. The images highlight the influence of background geological constraints on the flow. Introduction Applying peripheral water flooding for pressure maintenance was commenced after few years of the discovery of field A, a giant complex carbonate reservoir in the middle-east. Although this strategy has been successful, there is evidence of an uneven sweep due to reservoir complexity. These complications have led to the introduction of pattern-based flooding technology and the establishment of the water injection (WI) and WAG pilots in the underswept lower units of the reservoir. The benefits of pattern flooding are more efficient and faster recovery. The potential drawbacks are greater costs and higher local pressures which could induce uneven flows. Detailed pattern flood modeling helped develop an optimum strategy for maximizing reserves and production, especially in the lower two oil bearing units of the reservoir (Ref. 1). Consequently, WI pilot has been implemented in the lower units of the reservoir. A detailed multi-year and multi measurement monitoring plan has been established to determine the pilot performance which includes deep reading technologies like electromagnetic surveys. The main objectives of the WI pilot project are:determine sweep efficiency in the target reservoir units,qualitatively assess the impact of injected fluid fluxes vertically across low permeability sub-units within the reservoir, anddetermine pressure support due to pattern injection. The pilot will also address the issues of uneven sweep, bypassed oil, and residual oil saturation. The acquired field data will be used to calibrate the simulation model for production, injection, saturation and pressure data in order to design as an optimum field development scheme for the lower reservoir units in the southern part of the field. (Ref 2)
Time-lapse cross-well electromagnetic (EM) surveys are used to monitor two types of fluid injection (Water Injection and Water Alternating Gas) in a giant field in the Middle East. Cross-well EM data will help optimize sweep efficiency, identify bypassed pay, and predict fluid-related issues such as water breakthrough by providing an image of the resistivity distribution between boreholes in time lapse. This paper explores the influence of a high quality background geologic model in constraining the interwell results and providing a higher resolution image of the ongoing flooding processes. The classic EM inversion process determines a coarse (3 to 5 m resolution) resistivity distribution from a basic initial static reservoir model built from logs. This study refines the model by adding variable resolutions to encompass the small-scale heterogeneities common to carbonate reservoirs. Incorporating geological data derived from seismic attributes, core descriptions, and detailed log analyses into the static model helps optimize the EM inversion and increases the resolution of the resulting inverted model. Introduction A few years after the discovery of a giant complex carbonate reservoir in the Middle East, Giant Field A (Fig. 1), peripheral water flooding was successfully initiated to maintain pressure. Recently, it appears that reservoir complexity has led to uneven sweep. ADCO is currently testing pattern-based flooding technologies to improve sweep efficiencies at two pilot studies—the water injection (WI) and water alternating gas (WAG) pilots—to monitor the under-swept lower units of one of the main reservoirs in this field, which are not being swept with the peripheral flood. Although pattern flooding leads to more efficient and faster recovery, some potential drawbacks include greater costs and higher local pressures, which could induce uneven flows. Detailed pattern flood modeling helped develop an optimum strategy for maximizing reserves and production, especially in the lower two oil bearing units of the reservoir (Bhatti et al. 2006). Consequently, water injection has been implemented for these lower units of the reservoir. A detailed multi-year and multi-measurement monitoring plan has been established to determine the performance of this pilot study, including deep reading technologies like cross-well electromagnetic surveys. The WI pilot was designed to determine sweep efficiency in the targeted reservoir units while assessing the impact of injected fluids on low permeability subunits and monitoring pressure support due to pattern injection. Uneven sweep, bypassed oil, and residual oil saturation are secondary considerations of the WI pilot study. Production, injection, saturation, and pressure data will be used to calibrate the simulation model. The ultimate goal is to design an optimum field development scheme for the lower reservoir units in the southern part of the field (Bhatti et al. 2007). Assessing pilot performance and fine-tuning the model's predictive capabilities requires proper surveillance, planning, and timely data gathering. To efficiently meet the pilot objectives while acquiring high-quality inter-well data, traditional methods were enhanced by the addition of more advanced (deep reading) methods. Selected well-based monitoring methods include well logs and pressure and flow data. Evaluation of a number of advanced geophysical methods led to the selection of the crosswell EM method for interwell saturation monitoring (Bhatti et al. 2007). This paper shows the results of the first time lapse in the WI pilot, where decrease in resistivity due to 4 months of water injection in the lowermost units of the reservoir have been identified and interpreted with respect to the geological understanding of the pilot area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.