ZnO varistors are made by mixing semiconducting ZnO powder with powders of other metal oxides e.g. Bi2O3, Sb2O3, CoO, MnO2, NiO, Cr2O3, SiO2 etc., followed by conventional pressing and sintering. The non-linear I-V characteristics of ZnO varistors result from the unique properties that the grain boundaries acquire as a result of dopant distribution. Each dopant plays important and sometimes multiple roles in improving the properties. However, the chemical nature of interfaces in this material is formidable mainly because often trace amounts of dopants are involved. A knowledge of the interface microchemistry is an essential component in the ‘grain boundary engineering’ of materials. The most important ingredient in this varistor is Bi2O3 which envelopes the ZnO grains and imparts high resistance to the grain boundaries. The solubility of Bi in ZnO is very small but has not been experimentally determined as a function of temperature.In this study, the dopant distribution in a commercial ZnO varistor was characterized by a scanning ion microprobe (SIM) developed at The University of Chicago (UC) which offers adequate sensitivity and spatial resolution.