Visualizing diverse anatomical and functional traits that span many spatial scales with high spatio-temporal resolution provides insights into the fundamentals of living organisms. Light-field microscopy (LFM) has recently emerged as a scanning-free, scalable method that allows for high-speed, volumetric functional brain imaging. Given those promising applications at the tissue level, at its other extreme, this highly-scalable approach holds great potential for observing structures and dynamics in single-cell specimens. However, the challenge remains for current LFM to achieve subcellular level, near-diffraction-limited 3D spatial resolution. Here, we report high-resolution LFM (HR-LFM) for live-cell imaging with a resolution of 300-700 nm in all three dimensions, an imaging depth of several micrometers, and a volume acquisition time of milliseconds. We demonstrate the technique by imaging various cellular dynamics and structures and tracking single particles. The method may advance LFM as a particularly useful tool for understanding biological systems at multiple spatiotemporal levels. Fig. 13. Imaging Golgi-derived membrane vesicles in living COS-7 cells at a volume acquisition time of 5 ms using HR-LFM. (a) Reconstructed 3D images of vesicles in living COS-7 cells labeled with mEmerald-Golgi-7 acquired at a volume acquisition time of 5 ms. The left and right are reconstructed 3D images at t = 0.005s and 5.000s of a 1000-time-point series, respectively. The depth-information is color-coded according to the color scale bar. (b) Zoomedin images of the corresponding boxed region in (a) at t = 0.005s, 3.000s, 3.500s, 4.000s, 4.500s and 5.000s, respectively. White arrows indicate vesicles moving during time-points. (c) Zoomed-in image (leftmost) of the boxed region in (b) at t = 0.005s and its z-stack images from z = 0.2 µm to +1.3 µm at an axial step size of 100 nm, resolving several nearby vesicles. (d) Zoomed-in images of the corresponding boxed region in (a) at t = 0.005s, 0.500s, 1.000s, 1.500s, 2.000s, 2.500s, 3.000s and 3.500s, respectively. Scale bars: 10 µm (a), 1 µm (b-d).