FTIR spectroscopy was combined with the matrix isolation technique and quantum chemical calculations with the aim of studying complexes of isocyanic acid with sulfur dioxide. The structures of the HNCO…SO2 complexes of 1:1, 1:2 and 2:1 stoichiometry were optimized at the MP2, B3LYPD3, B2PLYPD3 levels of theory with the 6-311++G(3df,3pd) basis set. Five stable 1:1 HNCO⋯SO2 complexes were found. Three of them contain a weak N-H⋯O hydrogen bond, whereas two other structures are stabilized by van der Waals interactions. The analysis of the HNCO/SO2/Ar spectra after deposition indicates that mostly the 1:1 hydrogen-bonded complexes are present in argon matrices, with a small amount of the van der Waals structures. Upon annealing, complexes of the 1:2 stoichiometry were detected, as well.