A more detailed understanding of the mechanisms underlying the formation of microbial communities is essential for the efficient management of microbial ecosystems. The stable states of microbial communities are commonly perceived as static and, thus, have not been extensively examined. The present study investigated stabilizing mechanisms, minority functions, and the reliability of quantitative analyses, emphasizing a metabolic network perspective. A bacterial community, formed by batch transferred cultures supplied with phenol as the sole carbon and energy source and paddy soil as the inoculum, was analyzed using a principal coordinate analysis (PCoA), mathematical models, and quantitative parameters defined as growth activity, community-changing activity, community-forming activity, vulnerable force, and resilience force depending on changes in the abundance of operational taxonomic units (OTUs) using 16S rRNA gene amplicon sequences. PCoA showed succession states until the 3
rd
transferred cultures and stable states from the 5
th
to 10
th
transferred cultures. Quantitative parameters indicated that the bacterial community was dynamic irrespective of the succession and stable states. Three activities fluctuated under stable states. Vulnerable and resilience forces were detected under the succession and stable states, respectively. Mathematical models indicated the construction of metabolic networks, suggesting the stabilizing mechanism of the community structure. Thirteen OTUs coexisted during stable states, and were recognized as core OTUs consisting of majorities, middle-class, and minorities. The abundance of the middle-class changed, whereas that of the others did not, which indicated that core OTUs maintained metabolic networks. Some extremely low abundance OTUs were consistently exchanged, suggesting a role for scavengers. These results indicate that stable states were formed by dynamic metabolic networks with members functioning to achieve robustness and plasticity.